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Abstract 

The integration of Vision Transformers (ViTs) into medical imaging 

has significantly improved the diagnostic accuracy of breast 

ultrasound (BUS) analysis by capturing global semantic context. 

However, the excessive computational complexity of these models 

renders them unsuitable for Point-of-Care (POC) applications, 

where portable ultrasound devices rely on low-power, edge 

computing hardware. This study proposes a novel Cross-

Architecture Knowledge Distillation framework designed to bridge 

the gap between high-performance diagnostics and real-time 

efficiency. We distill the structural knowledge of a computationally 

heavy Hybrid ViT-ConvNeXt Teacher into an ultra-lightweight 

MobileNet-V3 Student. By leveraging soft-target supervision, the 

student model inherits the global reasoning capabilities of the 

transformer while retaining the inductive bias and speed of a CNN. 

Experimental validation on an independent test set of the BUSI 

dataset demonstrates that the distilled student achieves a diagnostic 

accuracy of 95.06%, effectively matching the teacher model. 

Crucially, the student model reduces the storage footprint by 74x 

(from 438.8 MB to 5.9 MB) and accelerates inference speed by 15x, 

achieving a processing rate of 61.46 Frames Per Second (FPS) on a 

standard CPU. These results confirm that the proposed framework 

satisfies the latency requirements for real-time video analysis, 

enabling the deployment of specialist-level cancer detection on 
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handheld, battery-powered ultrasound devices without the need for 

cloud connectivity or GPU acceleration. 

Keywords: Breast Cancer Detection, Knowledge Distillation, 

Vision Transformers, Mo-bileNet-V3, Edge AI, Real-Time 

Ultrasound. 

 
وتحويلها إلى  Vision Transformerاستخلاص المعرفة من تقنية 

MobileNet-V3  للكشف عن سرطان الثدي في الوقت الفعلي على
 الأجهزة الطرفية

 
 العظيم دريدر عبد2، الحميد الواعر عبد1

 طرابلس، ليبياطرابلس،  المعلومات، جامعةكلية تقنية 1
 طرابلس، طرابلس، ليبيا الطبيعي، جامعةكلية العلاج 2

mo.alrayes@uot.edu.ly1, ABDO@zu.edu.ly2 

 

 الملخص 
( في التصوير الطبي إلى تحسين دقة تشخيص تحليل ViTsأدى دمج محولات الرؤية )

 ( بشكل ملحوظ، وذلك من خلال استخلاص السياقBUSالموجات فوق الصوتية للثدي )
الدلالي الشامل. مع ذلك، فإن التعقيد الحسابي لهذه النماذج يجعلها غير مناسبة لتطبيقات 

(، حيث تعتمد أجهزة POCالتشخيص باستخدام أجهزة الموجات فوق الصوتية المحمولة )
الموجات فوق الصوتية المحمولة على أجهزة حوسبة طرفية منخفضة القدرة. تقترح هذه 

دًا لنقل المعرفة مصممًة لسد الفجوة بين التشخيص عالي الأداء الدراسة إطار عمل جدي
-ViTوالكفاءة في الوقت الفعلي. نقوم بنقل المعرفة الهيكلية لنموذج المعلم الهجين 

ConvNeXt الذي يتطلب موارد حسابية كبيرة، إلى نموذج الطالب ،MobileNet-V3 
هداف المرنة، يرث نموذج الطالب فائق الخفة. من خلال الاستفادة من الإشراف على الأ

قدرات الاستدلال الشاملة للمحول مع الحفاظ على التحيز الاستقرائي وسرعة الشبكة 
(. يُظهر التحقق على مجموعة اختبار مستقلة من بيانات CNNالعصبية التلافيفية )

BUSI  وهو ما يطابق نموذج %60.59أن نموذج الطالب يحقق دقة تشخيصية تبلغ ،

http://www.doi.org/10.62341/rara9506
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 47بشكل فعال. الأهم من ذلك، أن نموذج الطالب يقلل من حجم التخزين بمقدار  المعلم
 10ميجابايت( ويسرّع عملية الاستدلال بمقدار  0.6ميجابايت إلى  7.4.4ضعفًا )من 

إطارًا في الثانية على وحدة معالجة مركزية  91.79ضعفًا، محققًا معدل معالجة يبلغ 
ديو طار المقترح يلبي متطلبات ممن الاستجابة لتحليل الفيقياسية. تؤكد هذه النتائج أن الإ

في الوقت الفعلي، مما يتيح نشر تقنيات الكشف عن السرطان على مستوى متخصص 
على أجهزة الموجات فوق الصوتية المحمولة التي تعمل بالبطارية دون الحاجة إلى اتصال 

 سحابي أو تسريع بواسطة وحدة معالجة الرسومات.
 Vision: الكشف عن سرطان الثدي، استخلاص المعرفة، المفتاحية الكلمات

Transformers  ،MobileNet-V3  الذكاء الاصطناعي الطرفي، الموجات فوق ،
 الصوتية في الوقت الحقيقي.

 
I. Introduction  

Breast cancer remains the most prevalent malignancy among 

women worldwide, accounting for approximately 11.7% of all new 

cancer diagnoses [1]. While Mammography is the gold standard for 

screening, Breast Ultrasound (BUS) plays an indispensable role, 

particularly for women with dense breast tissue where 

mammographic sensitivity is reduced. However, BUS diagnosis is 

inherently challenging; it is highly operator-dependent, and the 

images are plagued by speckle noise, low contrast, and shadowing 

artifacts. Consequently, the interpretation of ultrasound images 

often suffers from high rates of false positives and inter-observer 

variability, necessitating the development of robust Computer-

Aided Diagnosis (CAD) systems. 

In recent years, Deep Learning has emerged as a transformative 

force in medical imaging. Convolutional Neural Networks (CNNs) 

have established themselves as the benchmark for automated lesion 

classification. However, standard CNNs possess a fundamental 

architectural limitation, the local receptive field. They excel at 

identifying local textures (e.g., edges of a mass) but struggle to 

model long-range dependencies, such as the spatial relationship 

between a lesion and the surrounding anatomical context. To 

address this, Vision Transformers (ViTs) have recently been 

adapted from Natural Language Processing. By utilizing self-

http://www.doi.org/10.62341/rara9506
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attention mechanisms, ViTs capture global semantic context, 

offering superior diagnostic accuracy for complex malignancies. 

Despite their performance, the deployment of ViTs and Hybrid 

(CNN-Transformer) models in clinical settings faces a critical 

bottleneck, computational complexity. A typical Hybrid model 

requires massive memory bandwidth and high-end Graphical 

Processing Units (GPUs) to function. This is incompatible with the 

current trend toward Point-of-Care (POC) medicine, which relies on 

portable, handheld ultrasound devices powered by low-energy 

mobile processors. In a real-time clinical scanning environment, an 

AI system must process video streams at a minimum of 30 frames 

per second (FPS) to provide smooth, instantaneous feedback. ViT 

models, with inference speeds often falling below 5 FPS on standard 

CPUs, fail to meet this latency requirement, creating a "deployment 

gap" between research-grade accuracy and clinical utility. 

To bridge this gap, this study proposes a Knowledge Distillation 

(KD) framework designed specifically for real-time breast cancer 

detection. We suggest that high diagnostic accuracy and low latency 

are not mutually exclusive. By leveraging a high-performance 

Hybrid ViT-ConvNeXt as a "Teacher" and a lightweight 

MobileNet-V3 as a "Student", we transfer the global structural 

understanding of the Transformer into the compact architecture of 

the CNN. Unlike traditional training, where the model learns only 

from hard labels (Benign/Malignant), our distilled Student learns 

from the "soft targets" of the Teacher, inheriting the complex 

decision-making logic of the larger model without inheriting its 

computational weight. 

The main contributions of this paper are as follows: 

1.  Novel Distillation Framework: We introduce a Cross-

Architecture Knowledge Distillation pipeline that distills a heavy 

Hybrid Vision Transformer (ViT-Base + ConvNeXt) into an 

ultra-lightweight MobileNet-V3, specifically optimized for 

breast ultrasound texture analysis. 

2.  State-of-the-Art Efficiency: We demonstrate that the distilled 

Student model achieves a diagnostic accuracy of 95.06%, 

matching the performance of the Teacher model while reducing 

the parameter size by 74x (from 438.8 MB to 5.9 MB). 

3.  Real-Time Clinical Viability: We validate the model's inference 

speed on a standard CPU, achieving 61.46 FPS (16.27 ms 

http://www.doi.org/10.62341/rara9506
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latency). This confirms that the proposed model is capable of 

real-time video analysis on edge devices, overcoming the 

hardware limitations that currently hinder the adoption of AI in 

portable ultrasonography. 

 

II. Literature Review 

The integration of Artificial Intelligence into breast cancer diagnosis 

has evolved from simple Computer-Aided Diagnosis systems to 

sophisticated Deep Learning architectures. This section reviews the 

progression from Convolutional Neural Networks (CNNs) to Vision 

Transformers (ViTs), and the emerging paradigm of Knowledge 

Distillation (KD) for establishing real-time, edge-deployable 

medical diagnostics. 
1. Convolutional Neural Networks in Breast Ultrasound 

For the past decade, Convolutional Neural Networks have served as 

the backbone of medical image analysis. Architectures such as 

ResNet, VGG, and DenseNet have demonstrated high efficacy in 

classifying breast ultrasound (BUS) images by extracting 

hierarchical features, from low-level edges to high-level tumor 

shapes [1,2]. However, the deployment of these models in clinical 

settings faces a computational cost, which is a significant 

bottleneck. 

To address this, lightweight architectures like MobileNet and 

ShuffleNet were introduced [4]. MobileNetV3, specifically, utilizes 

depthwise separable convolutions and Neural Architecture Search 

to drastically reduce parameter counts suitable for mobile devices. 

While effective for texture analysis, pure CNN-based approaches 

often struggle with the "local receptive field" limitation. As noted 

by [5], CNNs are inherently biased towards local pixel 

neighbourhoods, often failing to capture the global context, such as 

the relationship between a tumor mass and distant tissue structures, 

which is critical for distinguishing malignant lesions from benign 

cysts in noisy ultrasound images. 
2. The Shift to Vision Transformers and Hybrid Models 

To overcome the locality constraints of CNNs,  ViTs were adapted 

from Natural Language Processing to computer vision. By treating 

images as sequences of patches and utilizing self-attention 

mechanisms, ViTs capture long-range dependencies and global 

semantic context [5]. In breast imaging, ViTs have shown superior 

http://www.doi.org/10.62341/rara9506
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performance in segmentation and classification tasks compared to 

standard CNNs, particularly in identifying subtle architectural 

distortions [6]. 

Despite their accuracy, pure ViTs suffer from two major drawbacks: 

a lack of inductive bias as it requires massive datasets and extreme 

computational latency. To mitigate this, recent literature has 

proposed Hybrid Architectures (e.g., ViT-CNN, TransUNet, 

BoTNet), which combine the feature extraction capabilities of 

CNNs with the global reasoning of Transformers [7]. While these 

hybrid models currently represent the state-of-the-art in accuracy, 

they exacerbate the computational problem, often resulting in heavy 

models (>100M parameters) with inference speeds below 5 FPS on 

standard CPUs, rendering them unsuitable for real-time video 

analysis on portable ultrasound devices. 
3. Knowledge Distillation for Efficient Edge AI 

Knowledge Distillation first formalized by [8], offers a solution to 

the efficiency-accuracy trade-off. KD functions on a "Teacher-

Student" paradigm, where a compact "Student" model learns not 

only from the ground truth labels but also from the "soft targets" 

generated by a large, pre-trained "Teacher" model. 

In the medical domain, KD has been successfully applied to 

compress ResNet models [9]. However, a novel and less explored 

frontier is Cross-Architecture Distillation, specifically, distilling the 

knowledge of a Transformer (Teacher) into a CNN (Student). 

Recent works in general computer vision, such as [10], have 

demonstrated that a CNN student can inherit the global "attention" 

logic of a Transformer teacher without inheriting its computational 

weight. 

4. Research Gap 

While MobileNet is established as a fast backbone, and ViTs are 

established as accurate classifiers, there is limited literature 

combining these via Knowledge Distillation specifically for breast 

ultrasound. Most existing studies either prioritize accuracy using 

heavy Hybrid models, where sacrificing real-time capability, or 

prioritize speed using vanilla MobileNets, where sacrificing 

sensitivity to complex malignancies. 

This study addresses this gap by proposing a Hybrid-to-MobileNet 

Distillation Framework. By using a sophisticated Hybrid ViT-

ConvNeXt teacher to guide a lightweight MobileNetV3 student, we 

http://www.doi.org/10.62341/rara9506
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aim to achieve the best of both worlds: the global contextual 

awareness of a Transformer and the inference speed of a light-

weight CNN, enabling >30 FPS diagnosis on edge hardware. 

 III. Methodology 

This study employs a Knowledge Distillation framework to bridge 

the gap between high-performance deep learning models and 

resource-constrained edge devices. The proposed pipeline consists 

of three phases: (1) Constructing and training a heavy "Teacher" 

model (Hybrid ViT-ConvNeXt), (2) Initializing a lightweight 

"Student" model (MobileNet-V3), and (3) Transferring knowledge 

using a composite loss function. The overall framework is illustrated 

in Figure 1. 

 

 
Figure 1. Knowledge Distillation framework 

http://www.doi.org/10.62341/rara9506
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1 Dataset and Preprocessing 

The model was developed using the Breast Ultrasound Images 

(BUSI) Dataset [11], which contains ultrasound images of women 

aged 25 to 75. The dataset consists of 780 images categorized into 

three classes: Normal, Benign, and Malignant. 

To ensure robust evaluation and prevent data leakage, an 

independent test set of 263 images was isolated before training. The 

data preprocessing pipeline included: 

1. Resizing: All images were resized to 224×224 pixels to match the 

input resolution requirements of the pre-trained backbones. 

2. Normalization: Images were normalized using ImageNet 

statistics (Mean: [0.485,0.456,0.406] Std: [0.229,0.224,0.225]) 

to facilitate transfer learning convergence. 

3. Stratification: The dataset split maintained the original class 

distribution to address the inherent class imbalance between 

benign and malignant samples. 

2 The Teacher Network: Hybrid ViT-ConvNeXt 

To generate high-quality "soft targets" for distillation, we designed 

a high-capacity Hybrid Teacher model capable of capturing both 

local texture and global context. 
2.1. Global Branch: Vision Transformer (ViT) 

We utilized the ViT-Base-Patch16 architecture initialized with 

ImageNet-21k weights. The input image × ∈ R^(Η×W×C) is split 

into fixed-size patches of 16×16. These patches are flattened and 

embedded linearly, with position embeddings added to retain spatial 

information. The ViT outputs a 768-dimensional feature vector 

corresponding to the [CLS] token, representing the global semantic 

understanding of the breast anatomy. 
2.2. Local Branch: ConvNeXt-Tiny 

ConvNeXt-Tiny as a parallel feature extractor, is integrated to 

remedy the ViT's lack of inductive bias. ConvNeXt is a modern 

Convolutional Neural Network (CNN) that modernizes standard 

ResNet blocks with large kernel sizes (7×7) and layer normalization, 

mimicking the hierarchical design of Transformers while retaining 

the texture-extraction capabilities of CNNs. This branch outputs a 

768-dimensional feature vector focused on high-frequency details 

such as tumor margins and speckle patterns. 

 

 

http://www.doi.org/10.62341/rara9506


 

 Volume 38 العدد

  1Partالمجلد 
 

International Science and 

Technology Journal 

 الدولية للعلوم والتقنيةالمجلة 

http://www.doi.org/10.62341/rara9506 

 

 حقوق الطبع محفوظة 
 لعلوم والتقنية الدولية ل مجلةلل

 

Copyright © ISTJ   9 

 
 

 

2.3. Feature Fusion 

The global ViT and local ConvNeXt feature vectors are 

concatenated to form a unified 1536-dimensional representation. 

This vector is passed through a Multi-Layer Perceptron head with 

Batch Normalization and Dropout (p=0.4) to produce the final 

classification logits Ζ_t. 

3. The Student Network: MobileNet-V3 

The Student model is MobileNet-V3, an architecture explicitly 

optimized for mobile CPUs. It utilizes Depth wise Separable 

Convolutions to reduce computational cost and Inverted Residual 

Blocks with Linear Bottlenecks to preserve information in low-

dimensional spaces. Additionally, it incorporates Squeeze-and-

Excitation (SE) modules to adaptively weight channel importance. 

The final classification head of MobileNet-V3 is  modified to output 

logits Ζ_s for the three target classes (Normal, Benign, Malignant). 

Unlike the Teacher, the Student operates without a Transformer 

branch, ensuring minimal latency. 

4. Knowledge Distillation Framework 

The core of our methodology is the transfer of "dark knowledge" 

from the frozen Teacher to the trainable Student. A composite loss 

function comprising two components is employed: 
4.1. Hard Loss (Ground Truth) 

The student learns from the true labels y using the standard Cross-

Entropy loss (L_CE), ensuring the model makes correct predictions: 

Lℎ𝑎𝑟𝑑 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆(𝑥), 𝑦) 

Where S(x) is the student’s softmax output. 
4.2. Soft Loss (Distillation) 

The student is also penalized for deviating from the Teacher's 

probability distribution. The Kullback-Leibler (KL) Divergence 

between the Student's logits  Z_s and the Teacher's logits Z_tis 

calculated, softened by a Temperature parameter T: 

      

L𝑠𝑜𝑓𝑡 = 𝐾𝐿 ( (
Z𝑠

𝑇
) , (

Z𝑡

𝑇
)) . 𝑇2 

http://www.doi.org/10.62341/rara9506
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Where σ denotes the softmax function. A higher temperature T 

produces a softer probability distribution, revealing the relationships 

between classes (e.g., how similar a specific Malignant tumor looks 

to a Benign one). 
4.3. Total Loss Function 

The final objective function minimizes the weighted sum of both 

losses: 

L𝑡𝑜𝑡𝑎𝑙 =  α Lℎ𝑎𝑟𝑑 + (1 −  𝛼)L𝑠𝑜𝑓𝑡 

In our experiments, the temperature is set to T = 4.0 to maximize 

information extraction from the Teacher's logits, and the balancing 

weight α = 0.5 to give equal importance to ground truth accuracy 

and teacher mimicry. 

5. Experimental Implementation 

The models were implemented using PyTorch. The Teacher model 

was pre-trained and frozen during the distillation phase. The 

student model was trained using the AdamW optimizer with a 

learning rate of 1e−4 and a weight decay of 0.01 for 15 epochs. 

• Training Hardware : NVIDIA GPU (CUDA) was used for model 

training. 

• Inference Benchmarking: To simulate real-world edge 

deployment, inference speed (latency) and frames per second 

(FPS) were measured on a standard CPU with a batch size of 1. 

 
IV. Results 
1. Evaluation Protocol 

To validate the effectiveness of the proposed Knowledge 

Distillation framework, a quantitative evaluation was conducted on 

an independent test set comprising 263 breast ultrasound images 

(87 Benign, 88 Malignant, 88 Normal). These images were  

excluded from the training phase to prevent data leakage. 

Diagnostic performance was assessed using Accuracy, Precision, 

Recall, and F1-Score. Computational efficiency was evaluated 

based on Model Size (MB), Inference Latency (milliseconds per 

image), and Throughput (frames per second - FPS). All efficiency 

benchmarks were conducted on a standard CPU environment to 

simulate the hardware constraints of low-cost, portable medical 

devices. 

http://www.doi.org/10.62341/rara9506
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2. Diagnostic Performance Assessment 

The classification results for both the Teacher (Hybrid ViT-

ConvNeXt) and the Student (Distilled MobileNet-V3) are 

summarized in Table 1. 

 
Table 1. Class-wise Diagnostic Performance (Teacher vs Student) 

Class Model Precision Recall F1-Score 

Benign 
Teacher 

Student 

0.96 

0.96 

0.89 

0.91 

0.92 

0.93 

Malignant 
Teacher 

Student 

0.92 

0.94 

0.97 

0.97 

0.94 

0.96 

Normal 
Teacher 

Student 

0.97 

0.95 

1.00 

0.98 

0.98 

0.96 

Overall 
Teacher 

Student 

0.95 

0.95 

0.95 

0.95 

0.95 

0.95 

 

While the Teacher model exhibited a slightly higher recall for 

normal tissue, the Distilled Student model demonstrated superior 

sensitivity in detecting malignancies. Specifically, the Student 

achieved an F1-score of 0.96 for the Malignant class, surpassing the 

Teacher’s score of 0.94. This suggests that the distillation process 

acted as a regularizer, helping the lightweight student focus on the 

essential textural biomarkers of malignancy while discarding the 

noise that led to minor overfitting in the heavier Teacher model. The 

Confusion Matrix in Figure 2 illustrates the class-wise predictions. 

The Student model misclassified only a negligible number of 

malignant cases as benign, which is a critical safety requirement for 

clinical screening tools. 

 
Figure 2. Convolution Matrix. 

http://www.doi.org/10.62341/rara9506
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3. Computational Efficiency Analysis 

The primary objective of this study was to enable real-time 

inference on edge devices. Table 2 presents the efficiency 

comparison between the baseline Teacher and our proposed 

Student. 

Table 2. Efficiency Comparison on CPU Hardware 
Metric Teacher 

(Hyprid VIT) 

Student 

(MobileNet-V3) 

Improvment 

Model Size 438.8 MB 5.9 MB 98.6% (74x) 

Inference Time 242.9 ms 16.3 ms 93.3 % 

Frame Rate 4,1 FPS 61.5 FPS 15x 

Accuracy 95.06 % 95.06 % No Loss 

 

The Teacher model, with a file size of 438.8 MB, required an 

average of 242.9 ms to process a single image on a CPU, resulting 

in a throughput of only 4.12 FPS. This latency is insufficient for 

real-time video scanning, which typically requires a minimum of 30 

FPS. 

In contrast, the Distilled Student model reduced the storage 

footprint to 5.9 MB, representing a 74x compression ratio. 

Furthermore, the inference latency dropped drastically to 16.3 ms, 

yielding a processing speed of 61.46 FPS. This throughput is 

approximately 2x faster than the standard refresh rate of commercial 

ultrasound machines (30 Hz), confirming that the model can be 

deployed for smooth, real-time lesion tracking without hardware 

acceleration. Figure 3 shows the Efficiency comparison between the 

teacher and the student model 

 
Figure 3. Efficiency Comparison 

http://www.doi.org/10.62341/rara9506
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4. Impact of Distillation 

To verify the contribution of the Knowledge Distillation (KD) 

strategy, we compared the Distilled Student against a standard 

MobileNet-V3 trained from scratch (without a Teacher). The 

standard MobileNet achieved an accuracy of only 88.46%. The 

Distilled Student's performance jump to 95.06% confirms that the 

"Dark Knowledge" transferred from the Hybrid ViT, specifically, 

the structural relationships between tissue types, was successfully 

encoded into the CNN architecture, allowing it to perform beyond 

its standard capacity. 

V. Discussion 

The primary objective of this study was to resolve the conflict 

between the high computational demand of Vision Transformers 

and the low-latency requirements of portable medical imaging. By 

distilling a Hybrid ViT-ConvNeXt teacher into a MobileNet-V3 

student, we demonstrated that it is possible to achieve state-of-the-

art diagnostic accuracy on Edge-Grade Hardware. 
1. Interpretation of Diagnostic Performance 

The most significant, and perhaps counter-intuitive, finding of this 

study is that the lightweight Student model matched the global 

accuracy (95.06%) of the heavy Teacher model and actually 

outperformed it in detecting malignancies (F1-Score: 0.96 vs. 0.94). 

This phenomenon challenges the prevailing assumption that "deeper 

is better" in medical image analysis. We attribute the Student's 

superior sensitivity to the regularization effect of Knowledge 

Distillation. The Hybrid Teacher model, with its 100+ million 

parameters, possesses an excessive capacity to memorize high-

frequency details. In ultrasound imaging, this often leads to 

overfitting on speckle noise, granular interference that mimics tissue 

texture. The MobileNet Student, with its limited parameter space 

(5.9 MB), lacks the capacity to memorize this noise. Instead, forced 

to mimic the "soft probabilities" of the Teacher, the Student learns 

only the most robust, generalizing features, such as acoustic 

shadowing and irregular margins, that define malignancy. 

Effectively, the distillation process acted as a filter, discarding the 

Teacher's architectural noise while retaining its structural wisdom. 
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2. Clinical Implications 

Clinical utility in ultrasonography is defined by temporal resolution. 

A radiologist scans a patient dynamically; if the AI overlay lags 

behind the probe movement, the tool becomes a distraction rather 

than an aid. Existing state-of-the-art models, such as pure Vision 

Transformers or DenseNets, typically operate at 2–5 FPS on non-

GPU hardware. Our Distilled Student achieved 61.46 FPS on a 

standard CPU. Since commercial ultrasound probes typically stream 

video at 30 Hz, our model processes frames twice as fast as they are 

generated. This is critical for two reasons: 

1.  Smooth User Experience: It ensures zero visual lag during 

scanning, allowing for instantaneous highlighting of suspicious 

regions. 

2.  Battery Efficiency: Because the model computes faster than the 

video stream, the processor can enter low-power sleep states 

between frames, extending the battery life of portable, handheld 

ultrasound devices. 
3. Limitations and Future Work 

Despite promising results, this study has limitations. First, the 

evaluation was conducted on the BUSI dataset. While we utilized 

an independent test split to prevent leakage, external validation on 

multi-center datasets (e.g., OASBUD or UDIAT) is necessary to 

confirm generalization across different ultrasound machines. 

Second, our model relies solely on B-mode images; future iterations 

could incorporate Doppler or Elastography data to improve 

specificity. 

Future work will focus on deploying this model into an Android/iOS 

mobile application to field-test its performance with low-cost 

handheld probes in resource-limited clinical settings. 

 

VI. Conclusion 

This study addresses the critical challenge of deploying high-

performance Artificial Intelligence on resource-constrained medical 

devices. While Hybrid Vision Transformers represent the current 

state-of-the-art in breast ultrasound diagnosis, their excessive 

computational requirements have historically limited their utility to 

high-end workstations. 

By implementing a Cross-Architecture Knowledge Distillation 

framework, we successfully transferred the global contextual 
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reasoning of a Hybrid ViT-ConvNeXt teacher into a lightweight 

MobileNet-V3 student. Our results demonstrate that diagnostic 

precision does not require massive computational power. The 

distilled student model achieved a 95.06% accuracy, effectively 

matching the teacher's performance, while offering a 74-fold 

reduction in model size (5.9 MB). Furthermore, with an inference 

speed of 61.46 FPS on standard CPU hardware, the proposed model 

meets and exceeds the latency requirements for real-time clinical 

video analysis. 

Crucially, the student model exhibited superior sensitivity in 

detecting malignancies (F1-Score: 0.96), suggesting that the 

distillation process effectively filtered out architectural noise while 

retaining essential diagnostic biomarkers. These findings represent 

a significant step toward democratizing AI in radiology, proving 

that robust, "specialist-level" cancer detection can be deployed on 

portable, handheld ultrasound devices without the need for 

expensive GPU infrastructure or cloud connectivity. Future work 

will focus on validating this framework on multi-center datasets and 

integrating the model into a mobile application for clinical field 

testing. 
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